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Abstract
We establish differential conditions to be fulfilled by the slope functions
α(x, y, z), β(x, y, z) corresponding to a given two-parametric family of orbits
(given in the form f (x, y, z) = c1, g(x, y, z) = c2) traced in space by
a material point so that these families can result in the presence of an
axisymmetric potential V = V (x2 + y2, z). All possible cases for the ‘given’
orbits are studied and some pairs of families and potentials are found.

PACS number: 45.50.−j
Mathematics Subject Classification: 70F17, 70M20

1. Introduction

The three-dimensional (3D) inverse problem of dynamics considered here seeks all potentials
V = V (x, y, z) which can produce, for adequate initial conditions, a two-parameter family of
orbits traced by a material point, say of unit mass. The family of orbits is given in advance by
two equations of the form

f (x, y, z) = c1, g(x, y, z) = c2 (1)

and is traced with energy-dependence function E = E(f, g).
Among those who have contributed recently to this problem of mechanics we quote the

following: Érdi (1982), Váradi and Érdi (1983), Bozis (1983), Bozis and Nakhla (1986),
Shorokhov (1988) and Puel (1992). The notation used (and also the mathematical tools) differ
from author to author. Besides that, not all authors have the same perspective. Different
viewpoints are adopted as regards, e.g., the number of parameters and the form of the
pre-assigned family (1) and also the role of the energy function. A short account of these
considerations may be found in the review paper by Bozis (1995).

The three-dimensional problem may be described as solvable under conditions.
Specifically, if the set of functions f and g given by (1) satisfies certain conditions, the
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3D problem can be solved to completion. Very recently Anisiu (2004, 2005) and also Bozis
and Kotoulas (2005) have derived a set of two energy-free PDEs for the spatial inverse problem
and offered several new families of the form (1).

In the present study we deal with axisymmetric potentials which are compatible with
a pre-assigned two-parametric family of orbits. These potentials have many physical
applications. For example, an interesting problem in astrodynamics is the motion of a star
in a time-independent, axially symmetric and gravitationally smooth galactic potential field
(Contopoulos 1960, Hénon and Heiles 1964). Moreover, three-dimensional axisymmetric
potentials were used as models to describe the disc and the bulge of barred galaxies (Miyamoto
and Nagai 1975, Pfenniger 1984). Special cases are also examined and pertinent examples are
offered in each case.

2. The 3D problem: basic facts

The family of orbits (1) can be represented by two ‘slope functions’

α = α(x, y, z) and β = β(x, y, z) (2)

defined by

α = δ2

δ1
, β = δ3

δ1
, (3)

where δi, i = 1, 2, 3 are the components of the vector �δ = ∇f × ∇g. The family (1) is the
general solution of the system of the ODEs,

dy

dx
= α(x, y, z),

dz

dx
= β(x, y, z). (4)

Furthermore, we introduce the notation

α0 = αx + ααy + βαz, β0 = βx + αβy + ββz

� = 1 + α2 + β2, n = �

α0
, n0 = nx + αny + βnz.

(5)

The potential V = V (x, y, z) has to satisfy two energy-free PDEs; one is of first order and
the other one is of second order. As shown by Bozis and Kotoulas (2005), for α0 �= 0, these
equations are

(αβ0 − α0β)Vx − β0Vy + α0Vz = 0 (6)

and

n[αVxx + (α2 − 1)Vxy + αβVxz − αVyy − βVyz]

+ (2 + αn0 + α0n)Vx + (2α − n0)Vy + 2βVz = 0. (7)

Remark 1. If both α0 and β0 are zero, the pertinent family consists of straight lines (Bozis
and Kotoulas 2004) and, in the framework of the present study, the case is studied in
section 5.2. In sections 3 and 4 we work assuming that α0 �= 0 and, in section 5, we
take α0 = 0.

Remark 2. From (6) and (7) it is easy to check that if V is a solution, then Ṽ = c1V + c2 is
a solution too (c1, c2 are constants). So, in what follows, without loss of generality, we shall
omit these constants.
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3. Axisymmetric potentials

In the present study we deal with genuine 3D axisymmetric potentials

V (x, y, z) = A(w, z), w = x2 + y2 (8)

where A is an arbitrary C2-function of its arguments w and z. Inserting (8) into (6), we obtain

Aw

Az

= r(x, y, z) (9)

where

r(x, y, z) = α0

2�
, � = xβα0 + (y − αx)β0. (10)

In section 4, we assume that � �= 0. The case � = 0 implies that α0 = 0 also and is studied
in section 5.

4. The case Π =/ 0

The function r(x, y, z) in (10) must depend on x, y, z through the arguments w and z of A in
(8) and this leads to the condition

yrx − xry = 0. (11)

Now, inserting (8) into (7), we get the equation

a20Aww + a11Awz + a10Aw + a01Az = 0, (12)

where the coefficients are

a20 = 4n(αy + x)(αx − y), a11 = 2nβ(αx − y)

a10 = 2x(2 + αn0 + α0n) + 2y(2α − n0), a01 = 2β.
(13)

Having made sure that Aw = r(w, z)Az, we express all derivatives appearing in (12) in terms
of Az and Azz and we rewrite (12) in the form

Azz

Az

= s(x, y, z), (14)

where s is given by

s(x, y, z) = −a20(rrz + rw) + a11rz + a10r + a01

a20r2 + a11r
. (15)

The function s must depend on x, y, z through the two variables w and z. To this end, we
must have

ysx − xsy = 0, (16)

i.e., s = s(w, z). Then, from (14), we obtain

Az = T (w) e
∫

s(w,z) dz. (17)

The compatibility condition Azw = Awz for the two equations (9) and (17) leads to

dT

dw
=

(
rz + rs −

∫
∂s

∂w
dw

)
T (18)

meaning that the expression inside the parenthesis in (18) must depend merely on w, i.e.,

rzz + rzs + rsz − sw = 0. (19)
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The three conditions (11), (16) and (19) are necessary and sufficient for the existence and the
determination of the potential A = A(w, z).

Example 1. We consider the two-parametric family of orbits given by the pair

α = −x

y
, β = 4xz

x2 − y2
. (20)

For this pair {α, β} we proceed successively as follows:

• (i) From (5) and (10), we find α0 = − x2+y2

y3 �= 0, β0,�, n, n0 and � = − 4z(x2+y2)

y3 . So,
example (20) is classified in the present case.

• (ii) From (10) we find r and from (13) we calculate the coefficients a20, a11, a10, a01 to
obtain from (15) the function s. It is

r(w, z) = 1

8z
, s(w, z) = 1

z
. (21)

• (iii) We observe that all conditions (11), (16) and (19) are satisfied. From (18) we
find T (w) = 1 and from the compatible equations (9) and (17) we obtain A(w, z) =
T0

(
z2 + 1

4w
)

or, apart from a constant T0,

V (x, y, z) = x2 + y2 + 4z2. (22)

5. The case Π = 0

Up to now we supposed that α0 �= 0. But when � = 0, in view of (10), α0 must also vanish.
In this section we study in detail the case α0 = 0. In this case equation (7) is no longer valid
and must be replaced.

5.1. The case α0 = 0 and β0 �= 0

If for the given two-parametric family of orbits � = 0 (� is defined in (10)), then α0 = 0 and

α = y

x
. (23)

The first-order PDE (6) becomes Vy = y

x
Vx which, for our axisymmetric potentials (11), is

satisfied identically. The second-order PDE (7) now reads (Bozis and Kotoulas 2005)

k11Vxx + k12Vxy + k13Vxz + k23Vyz + k33Vzz + k01Vx + k02Vy + k03Vz = 0 (24)

where

k11 = ñβ, k12 = ñαβ, k13 = ñ(β2 − 1),

k23 = −ñα, k33 = −ñβ,

k01 = 2 + βñ0 + ñβ0, k02 = 2α, k03 = 2β − ñ0.

(25)

The expressions for ñ and ñ0 are

ñ = �

β0
, ñ0 = ñx + αñy + βñz. (26)

We now compute the derivatives in x, y, z of first and second order of the potential function (8)
and we substitute them into (24). Then we end up with an ordinary second-order differential
equation in the unique unknown function A = A(w, z). This equation reads

m20Aww + m11Awz + m02Azz + m10Aw + m01Az = 0, (27)
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where the coefficients are
m20 = 4x2k11 + 4xyk12, m11 = 2xk13 + 2yk23, m02 = k33

m10 = 2k11 + 2xk01 + 2yk02, m01 = k03.
(28)

We proceed as follows. With α = y

x
and in view of (30) and (33) we calculate, from (28), the

coefficients m20,m11,m02,m10,m01 and we rewrite equation (27) as follows:

4wAww − Azz = �, (29)

where

� = M11Awz + M10Aw + M01Az (30)

with

M11 = −2

(
xβ − w

xβ

)

M10 = −2

[
1 +

xβ0

β�
(2 + βñ0 + �) +

2y2β0

xβ�

]
,

M01 = β0(ñ0 − 2β)

β�
.

(31)

With α = y

x
, the functions � and β0 are taken from (5) and ñ0 from (26). Therefore the three

coefficients (31), appearing in (30), depend on the positional coordinates x, y, z and on β (up
to the second-order derivatives of β(x, y, z) are included).

On the other hand, the left-hand side of (29) must depend on x, y, z through w = x2 + y2

and z. Therefore, condition (16) must be satisfied for r = �, i.e., x�y = y�x . We now
distinguish the following two alternatives:

• (i) We deal with a definite inverse problem, i.e., except for α = y

x
, the function β(x, y, z)

is also given. If the coefficients (31) for the function �, given by (30), depend merely on
w and z, we proceed to the solution of the PDE (29).

• (ii) The function β(x, y, z) is free and we aim at finding conditions on β so that the PDE
(29) does indeed possess solutions of the form (11). In this case the subsequent results
would be very lengthy. For this reason, we restrict ourselves in sketching the procedure.
Equation (11), when applied to r = � given by (30), allows us to express the function
B(w, z) = −Awz(w, z) linearly in terms of Aw and Az to obtain

B = N10Aw + N01Az (32)

where the coefficients N10 and N01 in (32) are given by

N10 = yM10x − xM10y

yM11x − xM11y

, N01 = yM01x − xM01y

yM11x − xM11y

. (33)

The requirement that B in (32) also satisfies (11) for r = B yields the ratio
Aw

Az

= R (34)

where

R = −yN01x − xN01y

yN10x − xN10y

(35)

in terms of x, y, z. It is necessary also to check if xRy = yRx . If not, we conclude
that, for this β(x, y, z), equation (27) has no admissible solution (i.e. of the form A =
A(w, z)). If R is admissible, then, working with Aw = R(w, z)Az, we write (27) as

Azz

Az

= S. (36)
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We ensure the compatibility of equations (34) and (36) in the same manner as we did with
equations (9) and (14).

Example 2. For α = y

x
, β = λ0

z
x

(λ0 = const. �= 0, 1), we find from (5) and (10),
successively, α0 = 0,� = 0, β0 = 2z

x2 �= 0 and �. So, the example belongs to the case treated
in the present subsection.

From (26) we calculate ñ and ñ0 and, from (31), the coefficients M11,M10,M01. Then
equation (30) reads

� = 2

(
w

λ0z
− λ0z

)
Awz − 4λ0Aw +

(
2 − λ0

λ0z

)
Az (37)

and this � is apparently admissible.
To be specific let us write the PDE (29) for λ0 = − 1. It reads

4wzAww + 2(w − z2)Awz − zAzz − 4zAw + 3Az = 0. (38)

Under the transformation

ξ = wz2, η = z2 − w (39)

equation (38) takes a simpler form

(η2 + 4ξ)Aξη + 2ηAξ − 2Aη = 0. (40)

The general solution of (40) is

A(ξ, η) =
√

η2 + 4ξ [F(ξ, η) + G(η)] (41)

where

F(ξ, η) =
∫

B(ξ)

(η2 + 4ξ)3/2
dξ (42)

and B(ξ) and G(η) are arbitrary C2-functions.
In terms of w and z the expression for A in (41) is written as

A(w, z) = (z2 + w)[F(w, z) + G(z2 − w)]. (43)

Example 3. For the pair

α = y

x
, β = xz

2(x2 + z2)
, (44)

we have α0 = 0 and the coefficients M11,M10,M01 are found to be different from zero (not
given here). We proceed to the calculation of the functions R and S in (34) and (36). Both of
them are already expressed in the variables w and z. These are

R(w, z) = 2

z
, S(w, z) = 1

z
. (45)

Working in a similar way as in section 4 (Example 1), we determine the function A from the
relations (34) and (36):

A = 4w + z2. (46)

Thus the potential function V = V (x, y, z) is

V (x, y, z) = 4(x2 + y2) + z2. (47)
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5.2. The case α0 = 0 and β0 = 0

If α0 = 0 and β0 = 0, then we have a two-parameter family of straight lines (FSL) in 3D space.
Bozis and Kotoulas (2004) proved that not any potentials produce two-parametric families
of straight lines in 3D space but only those which satisfy the following two necessary and
sufficient differential conditions:

Vxy

(
V 2

x − V 2
y

) − VxVy(Vxx − Vyy) + Vz(VxVyz − VyVxz) = 0

Vxz

(
V 2

x − V 2
z

) − VxVz(Vxx − Vzz) + Vy(VxVyz − VzVxy) = 0.

For potentials V = A(x2 + y2, z), the first of equations (48) is satisfied identically. The second
equation becomes

4wρw + ρρz = 2ρ, (48)

where

ρ(w, z) = Az

Aw

(49)

and w is defined in (8). The general solution of (48) is given implicitly by the relation

ρ(w, z) = √
wB(2z − ρ), (50)

where B is an arbitrary C2-function. For any specific selection of B, we find (if possible) the
corresponding solution ρ(w, z) and then from (50) we find the function A(w, z).

Example 4. B = 2z − ρ implies ρ = 2z
√

w

1+
√

w
and the general solution of (49) is

A = A(w + 2
√

w + z2), A : arbitrary function (51)

and

V = A
(
x2 + y2 + 2

√
x2 + y2 + z2

)
. (52)

6. Concluding comments

The basic equations (6) and (7) have already been applied for homogeneous potentials and
families of orbits homogeneous of zero-degree. As a new application of these equations we
present here, in the form of differential conditions, the totality of two-parameter families
of orbits which can be generated, for adequate initial conditions, by any 3D axisymmetric
potential V = A(x2 + y2, z) (A: arbitrary). Due to the form of the potential, the two basic
PDEs of the inverse problem in space now become two linear partial differential equations in
the unknown function A = A(w, z). One equation is of first and the other of second order.
The coefficients of these equations, however, are carrying information regarding the family
(1) and depend on the three positional variables x, y, z. So, we found three conditions on the
coefficients so that these equations become compatible. With the aid of these conditions we
can check whether a given pair (α, β) does indeed fulfil them or not and then find uniquely
the corresponding potential. The mathematical treatment of the problem led us to study
certain special cases. All the computations were made by the symbolic algebra program
MATHEMATICA 5.2.
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